/home/kueuepay/public_html/vendor/symfony/mime/Address.php
<?php

/*
 * This file is part of the Symfony package.
 *
 * (c) Fabien Potencier <fabien@symfony.com>
 *
 * For the full copyright and license information, please view the LICENSE
 * file that was distributed with this source code.
 */

namespace Symfony\Component\Mime;

use Egulias\EmailValidator\EmailValidator;
use Egulias\EmailValidator\Validation\MessageIDValidation;
use Egulias\EmailValidator\Validation\RFCValidation;
use Symfony\Component\Mime\Encoder\IdnAddressEncoder;
use Symfony\Component\Mime\Exception\InvalidArgumentException;
use Symfony\Component\Mime\Exception\LogicException;
use Symfony\Component\Mime\Exception\RfcComplianceException;

/**
 * @author Fabien Potencier <fabien@symfony.com>
 */
final class Address
{
    /**
     * A regex that matches a structure like 'Name <email@address.com>'.
     * It matches anything between the first < and last > as email address.
     * This allows to use a single string to construct an Address, which can be convenient to use in
     * config, and allows to have more readable config.
     * This does not try to cover all edge cases for address.
     */
    private const FROM_STRING_PATTERN = '~(?<displayName>[^<]*)<(?<addrSpec>.*)>[^>]*~';

    private static EmailValidator $validator;
    private static IdnAddressEncoder $encoder;

    private string $address;
    private string $name;

    public function __construct(string $address, string $name = '')
    {
        if (!class_exists(EmailValidator::class)) {
            throw new LogicException(sprintf('The "%s" class cannot be used as it needs "%s"; try running "composer require egulias/email-validator".', __CLASS__, EmailValidator::class));
        }

        self::$validator ??= new EmailValidator();

        $this->address = trim($address);
        $this->name = trim(str_replace(["\n", "\r"], '', $name));

        if (!self::$validator->isValid($this->address, class_exists(MessageIDValidation::class) ? new MessageIDValidation() : new RFCValidation())) {
            throw new RfcComplianceException(sprintf('Email "%s" does not comply with addr-spec of RFC 2822.', $address));
        }
    }

    public function getAddress(): string
    {
        return $this->address;
    }

    public function getName(): string
    {
        return $this->name;
    }

    public function getEncodedAddress(): string
    {
        self::$encoder ??= new IdnAddressEncoder();

        return self::$encoder->encodeString($this->address);
    }

    public function toString(): string
    {
        return ($n = $this->getEncodedName()) ? $n.' <'.$this->getEncodedAddress().'>' : $this->getEncodedAddress();
    }

    public function getEncodedName(): string
    {
        if ('' === $this->getName()) {
            return '';
        }

        return sprintf('"%s"', preg_replace('/"/u', '\"', $this->getName()));
    }

    public static function create(self|string $address): self
    {
        if ($address instanceof self) {
            return $address;
        }

        if (false === strpos($address, '<')) {
            return new self($address);
        }

        if (!preg_match(self::FROM_STRING_PATTERN, $address, $matches)) {
            throw new InvalidArgumentException(sprintf('Could not parse "%s" to a "%s" instance.', $address, self::class));
        }

        return new self($matches['addrSpec'], trim($matches['displayName'], ' \'"'));
    }

    /**
     * @param array<Address|string> $addresses
     *
     * @return Address[]
     */
    public static function createArray(array $addresses): array
    {
        $addrs = [];
        foreach ($addresses as $address) {
            $addrs[] = self::create($address);
        }

        return $addrs;
    }
}
Journal Details
top
blog

Enhancing Payment Security: The Role of Encryption and Tokenization in Digital Transactions

As digital transactions proliferate, ensuring robust payment security is more critical than ever. Two foundational technologies that are pivotal in this effort are encryption and tokenization.
Encryption is a process that transforms data into a secure format, known as ciphertext, which can only be deciphered using a specific decryption key. This means that even if data is intercepted during transmission, it remains unreadable and protected from unauthorized access. Encryption is essential in safeguarding sensitive payment information, such as credit card details and personal data, during online transactions.
Tokenization, on the other hand, involves substituting sensitive data with unique identifiers or "tokens." These tokens serve as placeholders and have no value outside of the specific transaction context. If intercepted, tokens are meaningless and cannot be used to access the original sensitive data. This method significantly reduces the risk of fraud and data breaches, as the actual payment information is not stored or transmitted.
Together, encryption and tokenization form a powerful security framework. Encryption ensures that data is protected during transmission, while tokenization minimizes the risk of exposing sensitive information by replacing it with secure, non-sensitive tokens.
These technologies are integral to modern payment platforms, providing a robust defense against cyber threats. By implementing advanced encryption and tokenization techniques, businesses can enhance the security of digital transactions, ensuring that users' financial and personal information remains safe. This comprehensive approach not only builds user trust but also fortifies the overall security infrastructure of digital payment systems. As cyber threats evolve, the continued advancement of encryption and tokenization will be crucial in maintaining secure and reliable payment processes.

Tags